

DATA SHEET

Product Name Radial Terminal Type Cement Fixed Resistors

Part Name PRU Series File No. DIP-SP-037

Uniroyal Electronics Global Co., Ltd.

88 Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33		
Email	marketing@uni-royal.cn		
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.		
	Aeon Technology Corporation		
	Royal Electronic Factory (Thailand) Co., Ltd.		
	Royal Technology (Thailand) Co., Ltd.		

1.Scope

- This datasheet is the characteristics of Radial Terminal Type Cement Fixed Resistors manufactured by UNI-RPYAL.
- 1.1 Compliant with RoHS directive.
- 1.2 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4th digit will be "0"

Example: PRU0=PRU type

2.2 5th~6th digits:

2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.

Example: AW=10W FW=15W

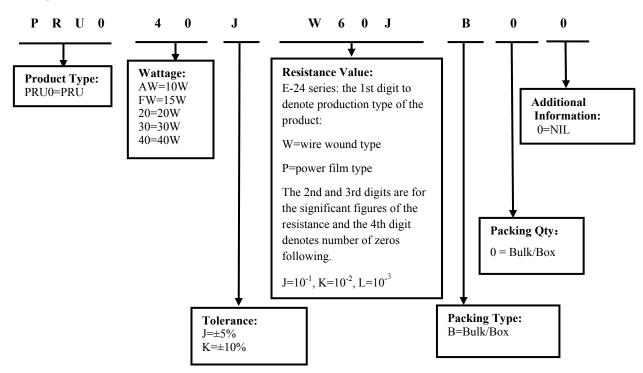
2.2.2 For power rating between 20 watt to 99 watt, the 5th and the 6th digits will show the whole numbers of the power rating itself.

Example: 20=20W 30=30W 40=40W

2.3The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

 $F=\pm 1\%$ G= $\pm 2\%$ J= $\pm 5\%$ K= $\pm 10\%$

- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following
 Example: W60J=6Ω W120=12Ω P273=27KΩ

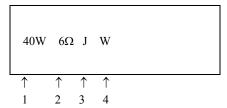

2.5 The 12th, 13th & 14th digits.

2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product .Example: 0= standard product
- 3. Ordering Procedure

```
(Example: PRU 40W \pm 5\% 6\Omega B/B)
```



4. Marking

Example:

Code description and regulation:

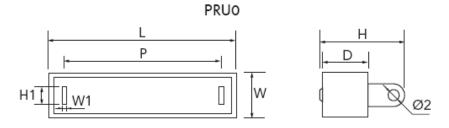
1. Wattage Rating

2. Nominal Resistance Value

3. Resistance Tolerance. J: \pm 5%

K: ± 10%

4. Pattern:


M: Power film

W: Wire wound

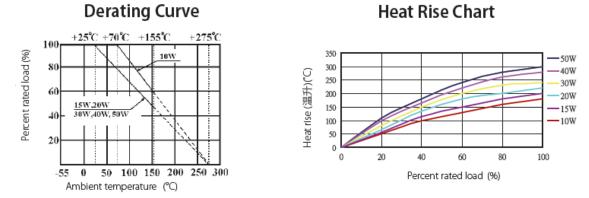
Color of marking: Black Ink

Note: The marking code shall be prevailed in kind!

5. Ratings & Dimension

5.1 Dimension (mm):

Type Dimension	PRU 10W	PRU 15W	PRU 20W	PRU 30W	PRU 40W	PRU 50W
W±1.0mm	10	12.5	12.5	19	19	19
D±1.0mm	9	11.5	13.5	19	19	19
L±1.5mm	48	48	63	75	90	90
P±1.0mm	32	32	44	54	70	70
H±1.0mm	18	21	21	32	32	32
H1±0.4mm	5.5	6.2	6.2	7.6	7.6	7.6
Ø2±0.2mm	2.5	2.5	2.5	3.2	3.2	3.2
W1±0.08mm	0.5	0.5	0.5	0.5	0.5	0.5

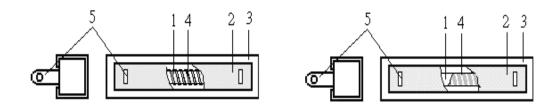

5.2 Resistance Range :

Туре	PRU 10W	PRU 15W	PRU 20W	PRU 30W	PRU 40W	PRU 50W
Wire-wound	1Ω~820Ω	1Ω~1ΚΩ	2Ω~1.2ΚΩ	3Ω~1.5KΩ	6Ω~1.5KΩ	6Ω~1.5ΚΩ
Power Film	821Ω~200ΚΩ	1.1ΚΩ~200ΚΩ	1.3ΚΩ~200ΚΩ	/	/	/

6.0 Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternatingcurrent (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:


 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.) R= nominal resistance (OHM)

7. Structure

No.	Name	Material Generic Name
1	Body	Al ₂ O ₃
2	Filling materials	SiO ₂
3	Ceramic case	Al ₂ O ₃ CaO
4	Bracket	Iron
4	Resistance element	Power Film: Metal Oxide Film
		Wire-Wound: Alloy Wire
5	Terminal lug	Steel(tin plated iron surface)

8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	≥20Ω: ±350PPM/°Cmax <20Ω: ±400PPM/°Cmax	$\begin{array}{c} \mbox{4.8 Natural resistance changes per temp. Degree centigrade} \\ \hline R_2-R_1 \\ \hline R_2-R_1 \\ \hline R_1(t_2$-$t_1$)$ \\ \hline R_1: Resistance Value at room temperature (t_1); \\ \hline R_2: Resistance at test temperature (t_2) \\ \hline t_1: +25°C or specified room temperature \\ \hline t_2: Test temperature (-55°C or 125°C) \\ \hline \end{array}$
Short-time overload	Resistance change rate is: $\pm (5\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V- block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds for cement fixed resistors the testing voltage is 1000V.
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.
Resistance to soldering heat	Resistance change rate is: $\pm (1\%+0.05\Omega)$ Max. With no evidence of mechanical damage	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}c$ solder for 10 ± 1 seconds.
Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245°C±3°C Dwell time in solder: 2~3seconds.
Humidity (Steady state)	Resistance change rate is: $\pm (5\%+0.05\Omega)$ Max. With no evidence of mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2°C and 90~95%RH relative humidity
Load life in humidity	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100K\Omega \Delta R/R$: ±5% $\ge 100K\Omega \Delta R/R$: ±10%	7.9 Resistance change after 1000 hours (1.5 hours "ON" → 0.5 hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at 40±2°C and 93%±3% RH.
Load life	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100K\Omega \Delta R/R$: ±5% $\ge 100K\Omega \Delta R/R$: ±10%	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^{\circ}$ C or $70\pm2^{\circ}$ C ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	IEC 60068-2-1 (Aa) Lower limit temperature, for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	MIL-STD-202 108A Upper limit temperature , for 16H.

9. <u>Note</u>

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.

9.3. Storage conditions as below are inappropriate:

- a. Stored in high electrostatic environment
- b. Stored in direct sunshine, rain, snow or condensation.
- c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, etc.

10. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~6	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Delete the dimensions that are not on the drawing	3	Sep.23,2020	Song Nie	Yuhua Xu
4	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
5	Modify the temperature coefficient test conditions	5	Nov.07, 2022	Haiyan Chen	Yuhua Xu
6	Modify the load life test conditions	5	Sep.27, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice