

DATA SHEET

Product Name Radial Terminal Type-PRZ Series Resistors

Part Name PRZ Series File No. DIP-SP-042

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. **Scope**

- 1.1 This datasheet is the characteristics of Radial Terminal Type-PRZ Series manufactured by UNI-ROYAL.
- 1.2 Self-extinguishing
- 1.3 Extremely small &moisture resistance
- 1.4 Too low or too high values on Wire-wound & power-film type can be supplied on a case to case basis
- 1.5 Compliant with RoHS directive.
- 1.6 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: PZ1A=PRZA-1 type PZ2A=PRZA-2 type PRZC=PRZC type

PZ1C=PRZC-1 type PRZD=PRZD type

- 2.2 5th~6th digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6^{th} digit will be the letters of W.

Example: 3W=3W 5W=5W 7W=7W AW=10W FW=15W

2.2.2 For power rating between 20 watt to 99 watt, the 5^{th} and the 6^{th} digits will show the whole numbers of the power rating itself. Example: 20=20W

 $2.3\ The\ 7^{th}\ digit\ is\ to\ denote\ the\ Resistance\ Tolerance.$ The following letter code is to be used for indicating the standard Resistance\ Tolerance.

 $J=\pm 5\%$ $K=\pm 10\%$

- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.

Example: W12J=1.2 Ω W120=12 Ω P273=27K Ω

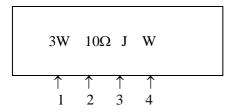

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

3. Ordering Procedure

(Example: PRZC 15W $\pm 5\%$ 10 Ω B/B)



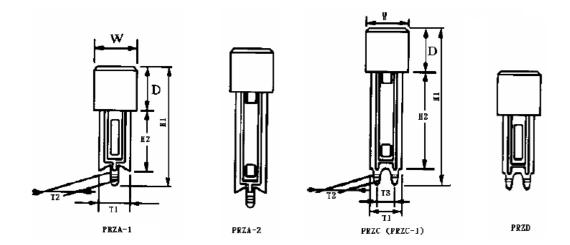
4. Marking

Example:

Code description and regulation:

- 1. Wattage Rating
- 2. Nominal Resistance Value
- 3. Resistance Tolerance. J: \pm 5%

K: ± 10%


4. Pattern:

M: Power film W: Wire wound

Color of marking: Black Ink

Note: The marking code shall be prevailed in kind!

5. Ratings & Dimension

5.1 PRZA-1Types:

			Dimen	sion(mm)		_		Resistance Range		
Type	W±1	D±1	L	P±1.5	T1±1	T2±0.2	+2 H1	+2 H2	Wire Wound	Power Film
							-1	-1		
3W	10	9	22±1	9.5	7	1.6	24	10	0.1Ω~47Ω	48Ω~150ΚΩ
5W	10	9	25/27±1	9.5/15	7	1.6	24	10	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.6	24	10	0.1Ω~560Ω	561Ω~200ΚΩ
10W	10	9	48±1.5	32/35	7	1.6	24	10	1Ω~820Ω	821Ω~200ΚΩ
15W	12.5	11.5	48±1.5	32	10	3	35	15	1Ω~1ΚΩ	1.1ΚΩ~200ΚΩ
20W	12.5	13.5	63±1.5	42	10	3	35	15	2Ω~1.2ΚΩ	1.3ΚΩ~200ΚΩ

5.2 PRZA-2 Types:

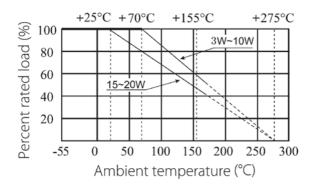
		Dimension(mm)							Resistance Range	
Туре	W±1	D±1	L	P±1.5	T1±1	T2±0.2	+2 H1	+2 H2	Wire Wound	Power Film
							-1	-1		
3W	10	9	22±1	9.5	7	1.6	39	25	$0.1\Omega\sim47\Omega$	48Ω~150ΚΩ
5W	10	9	27±1	15	7	1.6	39	25	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.6	39	25	0.1Ω~560Ω	561Ω~200ΚΩ
10W	10	9	48±1.5	32/35	7	1.6	39	25	1Ω~820Ω	821Ω~200ΚΩ
15W	12.5	11.5	48±1.5	32	10	3	47	30	1Ω~1ΚΩ	1.1ΚΩ~200ΚΩ
20W	12.5	13.5	63±1.5	42	10	3	47	30	2Ω~1.2ΚΩ	1.3ΚΩ~200ΚΩ

5.3 PRZC Types:

				Resistance Range							
Туре	W±1	D±1	L	P±1.5	T1±1	T2±0.2	T3±0.5	+2 H1 -1	+2 H2 -1	Wire Wound	Power Film
3W	10	9	22±1	9.5	7	1.5	3.5	36	22	0.1Ω~47Ω	48Ω~150ΚΩ
5W	10	9	27±1	15	7	1.5	3.5	36	22	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.5	3.5	36	22	$0.1\Omega\sim560\Omega$	561Ω~200ΚΩ
10W	10	9	48±1.5	32/35	7	1.5	3.5	36	22	1Ω~820Ω	821Ω~200ΚΩ
15W	12.5	11.5	48±1.5	32	10	2	5	47	30	1Ω~1ΚΩ	1.1ΚΩ~200ΚΩ
20W	12.5	13.5	63±1.5	42	10	2	5	47	30	2Ω~1.2ΚΩ	1.3ΚΩ~200ΚΩ

5.4 PRZC-1 Type

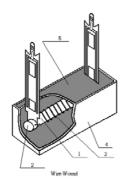
				Resistance Range							
Type	W±1	D±1	L	P±1.5	T1±1	T2±0.2	T3±0.5	+2 H1 -1	+2 H2 -1	Wire Wound	Power Film
5W	10	9	27±1	15	7	1.3	3.5	39	24	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.3	3.5	39	24	0.1Ω~560Ω	561Ω~200ΚΩ

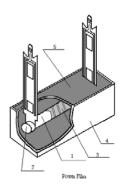

5.5 PRZD Type

				Resistance Range							
Type	W±1	D±1	L	P±1.5	T1±1	T2±0.2	T3±0.5	+2 H1 -1	+2 H2 -1	Wire Wound	Power Film
3W	10	9	22±1	9.5	7	1.3	3.5	24	10	0.1Ω~47Ω	48Ω~150ΚΩ
5W	10	9	27±1	15	7	1.3	3.5	24	10	0.1Ω~120Ω	121Ω~200ΚΩ
7W	10	9	35±1	22	7	1.3	3.5	24	10	0.1Ω~560Ω	561Ω~200ΚΩ
10W	10	9	48±1.5	32/35	7	1.3	3.5	24	10	1Ω~820Ω	821Ω~200ΚΩ

6. Derating Curve

6.1 Voltage rating:


Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:


$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.) R= nominal resistance (OHM)

7. Structure

No.	Name	Material Generic Name		
1	Body	Al_2O_3		
2	Сар	Tin plated iron		
2	Resistor element	Power: Metal Oxide Film		
3	Resistor element	Wire wound: Alloy Wire		
4	Ceramic case	Al ₂ O ₃ Cao		
5	Filling materials	SiO ₂		

8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)				
Temperature Coefficient	≥ 20Ω: ±350PPM/°C Max <20Ω: ±400PPM/°C Max	4.8 Natural resistance changes per temp. Degree centigrade $ \frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (PPM/°C)} $ $ R_1: \text{ Resistance Value at room temperature } (t_1); $ $ R_2: \text{ Resistance at test temperature } (t_2) $ $ t_{1:} +25^{\circ}\text{C or specified room temperature} $ $ t_{2:} \text{ Test temperature } (-55^{\circ}\text{C or } 125^{\circ}\text{C}) $				
Short-time overload	Resistance change rate must be in $\pm (5\% + 0.05\Omega)$,and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.				
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω) ,and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260°C±5°c solder for 10±1 seconds.				
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90°metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds.for cement fixed resistors the testing voltage is 1000V.				
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.				
Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: 245 °C ±3 °C Dwell time in solder: 2~3 seconds.				
Humidity (Steady state)	Resistance change rate must be in $\pm (5\% \pm 0.05\Omega)$,and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2°C and 90~95%RH relative humidity				
Load life in humidity	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	7.9 Resistance change after 1000 hours (1.5 hours "ON", 0.5 hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at $40\pm2^{\circ}\text{C}$ and $93\%\pm3\%$ RH.				
Load life	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 \text{K}\Omega \ \Delta R/R$: $\pm 5\%$ $\ge 100 \text{K}\Omega \ \Delta R/R$: $\pm 10\%$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^{\circ}\text{C}$ or $70\pm2^{\circ}\text{C}$ ambient.				
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.				
High Temperature Exposure	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.				

9. Note

9.1 UNI-ROYAL recommend the storage condition temperature: 15°C~35°C, humidity:25%~75%.

(Put condition for individual product)

Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) many be degraded.

 $9.2\ Store\ /\ transport\ cartons\ in\ the\ correct\ direction,\ which\ is\ indicated\ on\ a\ carton\ as\ a\ symbol.$

Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

- 9.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic.
 - b. Storage in direct sunshine \(\) rain and snow or condensation.
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl_2 , H_2S_3 NH_3 , SO_2 , NO_2 .

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~7	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	6	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	6	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	1.Modify derating curve 2.Modify the load life test conditions	3 5	Sep.27, 2024	Haiyan Chen	Yuhua Xu

[©] Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice