

DATA SHEET

Product Name Vertical Type Shrapnel Fuse Resistors

Part Name PHF 2W Series File No. DIP-SP-091

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1. Scope

- 1.1 This data sheet is the characteristics of Vertical Type Shrapnel Fuse Resistors manufactured by UNI-ROYAL.
- 1.2 Elastic sheet metal, solder dot fuse, reliable circuit cut off function
- 1.3 Elastic sheet metal, solder dot fuse, reliable circuit cut off function
- 1.4 Application: Over temperature protection of industrial power supply
- 1.5 Compliant with RoHS directive.
- 1.6 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: PHF0=PHF0 type
- 2.2 5th~6th digits:
- 2.2.1 The 5th and 6^{th} digit will be a number or a letter code.

Example: 2W=2W

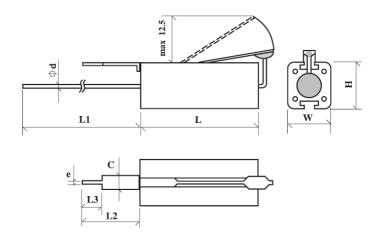
- 2.3 The 7^{th} digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. Example: $J=\pm5\%$ $K=\pm10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" to denote Wire-wound type respectively of the Cement Fixed Resistor product.
- 2.4.2 E-24 series in 2% & 5% & 10% tolerance, the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following

Example: W100=10Ω

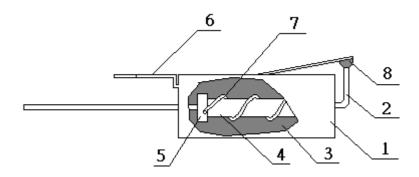
- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product


3. Ordering Procedure

(Example: PHF0 2W ±5% 39Ω B/B) H F J W В Product Type: Packing quantity: Resistance Value: PHF0=PHF0 E-24 series: the 1st digit to 0=Bulk/Box denote production type of the product: W=wire wound type Wattage: The 2nd and 3rd digits are for Additional Information: the significant figures of the 2W=2Wresistance and the 4th digit 0=NIL denotes number of zeros following. J=10⁻¹, K=10⁻², L=10⁻³ Tolerance: Packing Type: $J=\pm 5\%$ B=Bulk/Box $K = \pm 10\%$

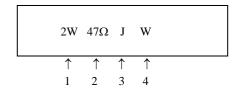


4. <u>Dimension</u> (unit: mm)

Туре	Dimension(mm)							Tolerance	Resistance		
	L ±1.0	W ±1.0	H ±1.0	L1 ±3.0	L2 ±1.5	L3 ±0.5	C ±0.1	e ±0.1	Фd ±0.05		Range
PHF0 2W	25.0	9.0	10.0	38.0	13.0	4.5	3.0	0.9	0.75	±5% ±10%	1Ω ~ 470Ω

5. Structure

No.	Name	material generic name		
1	Ceramic Case	Al ₂ O ₃ CaO		
2	Lead	Copper Wire		
3	Filling Materials	SiO ₂		
4	Basic body	Rod Type Ceramics		
5	End cap	Steel (Tin Plated iron Surface)		
6	Sheet metal	P-Cu Alloys		
7	Resistor	Alloys		
8	Welding spot	Solder		

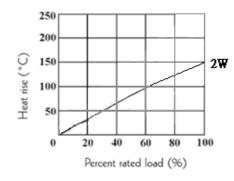


6. Marking

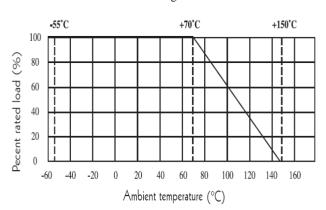
Example:

Code description and regulation:

1. Wattage Rating


2. Nominal Resistance Value

3. Resistance Tolerance. J: ± 5%


4. Pattern: W: Wire wound Color of marking: Black Ink

7. Derating Curve

Heat rise chart:

Derating curve:

9.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.)

R= nominal resistance (OHM)

8. Performance Specification

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient	±350PPM/°CMax.	$4.8 \ \text{Natural resistance changes per temp. Degree centigrade} \\ \frac{R_2 \cdot R_1}{R_1(t_2 \cdot t_1)} \times 10^6 \ (\text{PPM/°C}) \\ R_1: \ \text{Resistance Value at room temperature} (t_1) \ ; \\ R_2: \ \text{Resistance at test temperature} (t_2) \\ t_1: +25 \ ^{\circ}\text{C} \ \text{or specified room temperature} \\ t_2: \ \text{Room temperature} +100 \ ^{\circ}\text{C}$			
Short-time overload	Resistance change rate is: $\pm (3\% + 0.05\Omega) \ max.$ With no evidence of mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.			
Dielectric withstanding voltage No evidence of flashover mechanical damage, arcing or insulation break down.		4.7 Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds. For cement fixed resistors the testing voltage is 2000V.			
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.			
Cut-Off Temperature	Resistance must be off	When the temperature of the resistor surface is $150\pm20^{\circ}\text{C}$,the resistor Cut-Off .			
Resistance to soldering heat $ \begin{array}{l} \text{Resistance change rate is:} \\ \pm \left(1\% + 0.05\Omega\right) \text{ Max.} \\ \text{With no evidence of mechanical damage} \end{array} $		4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260°C±5°C solder for 10±1 seconds.			
Load life $\pm (5\% + 0.05\Omega)$		4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70 ± 2 °C ambient.			

9. Note

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br, etc.

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Aug.15, 2023	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice.