

DATA SHEET

Product Name Axial Leaded Type Cement Fixed Resistors

Part Name PRW Series File No. DIP-SP-025

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

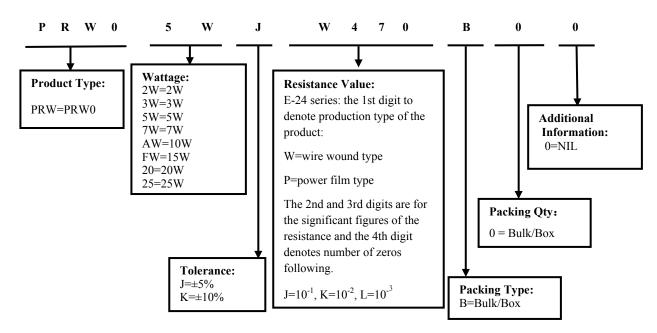
Tel	+86 512 5763 1411 / 22 /33		
Email	marketing@uni-royal.cn		
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.		
	Aeon Technology Corporation		
	Royal Electronic Factory (Thailand) Co., Ltd.		
	Royal Technology (Thailand) Co., Ltd.		

- 1. Scope:
- 1.1 This datasheet is the characteristics of Axial Leaded Type Cement Fixed Resistors manufactured by UNI-ROYAL
- 1.2 Self-extinguishing
- 1.3 Extremely small & sturdy mechanically safe
- 1.4 Non-inductive type available
- 1.5 Excellent flame & moisture resistance
- 1.6 Too low or too high values on Wire-wound & Power -film type can be supplied on a case to case basis
- 1.7 Compliant with RoHS directive.
- 1.8 Halogen free requirement.

2. Part No. System:

The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3 digits, the 4th digit will be "0" Example: PRW0=PRW type
- 2.2 $5^{\text{th}} \sim 6^{\text{th}}$ digits:
- 2.2.1 For power of 1 watt to 16 watt ,the 5th digit will be a number or a letter code and the 6th digit will be the letters of W. Example: 5W=5W; AW=10W
- 2.2.2 For power rating between20 watt to99 watt, the 5th and the 6th digits will show the whole numbers of the power rating itself. Example: 20=20W 75=75W
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ K= ±10%
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following.

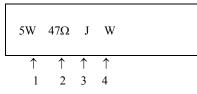

Example: W12J=1.2Ω W120=12Ω P273=27KΩ

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:B=Bulk/Box
- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.

2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product. Example: 0= standard product

3. Ordering Procedure

(Example: PRW 5W \pm 5% 47 Ω B/B)



4. Marking

Example:

Code description and regulation:

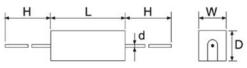
1. Wattage Rating

2. Nominal Resistance Value

3. Resistance Tolerance. J: \pm 5%

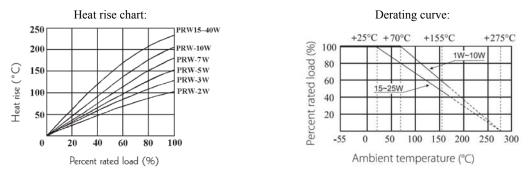
K: ± 10%

4. Pattern:


M: Power film

W: Wire wound

Color of marking: Black Ink


Note: The marking code shall be prevailed in kind!

5. Ratings & Dimension

	Dimension(mm)				Max.	Max.	Resistance Range		
Туре	W±1	D±1	L±1	Н	d±0.05	working voltage	Overload voltage	Wire Wound	Power Film
PRW 1W	6	6	13.5	25±3	0.70	200V	400V	0.1Ω~27Ω	28Ω~100ΚΩ
PRW 2W	7	7	18	28±5	0.70	250V	500V	0.1Ω~27Ω	28Ω~120ΚΩ
PRW 3W	8	8	22	32±5	0.70	300V	600V	0.1Ω~39Ω	40Ω~150ΚΩ
PRW 5W	10	9	22	35±5	0.75	350V	700V	0.1Ω~47Ω	48Ω~150ΚΩ
PRW 7W	10	9	35	35±5	0.75	500V	1000V	0.1Ω~680Ω	681Ω~200KΩ
PRW 10W	10	9	49	35±5	0.75	700V	1400V	0.1Ω~910Ω	911Ω~200KΩ
PRW 15W	12.5	11.5	49	35±5	0.75	700V	1400V	1Ω~1ΚΩ	1.1ΚΩ~200ΚΩ
PRW 20W	14.5	13.5	60	35±5	0.75	750V	1500V	2Ω~1.2ΚΩ	1.3KΩ~200KΩ
PRW 25W	14.5	13.5	64	35±5	0.75	750V	1500V	2Ω~1.2ΚΩ	1.3KΩ~200KΩ

6. Derating Curve

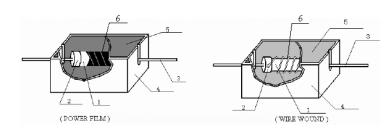
6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)


P = power rating (WATT.)

R= nominal resistance (OHM)

7. <u>Structure</u>

No.	Name	material generic name		
1	Body	Al ₂ O ₃		
2	Сар	Tin plated iron		
3	Lead	Copper Wire		
4	Ceramic Case	Al ₂ O ₃ CaO		
5	Filling Materials	SiO ₂		
6	Resistance element	Power film: Metal Oxide Film		
6	Resistance ciciliciit	Wire-wound: Alloys		

8. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)			
Temperature Coefficient	≥20Ω: ±350PPM/°C <20Ω: ±400PPM/°C	$\begin{array}{l} \mbox{4.8 Natural resistance changes per temp. Degree centigrade} \\ \hline R_2-R_1 \\ \hline R_2-R_1 \\ \hline R_1(t_2$-$t_1$) \\ \hline R_1: Resistance Value at room temperature (t_1); \\ \hline R_2: Resistance at test temperature (t_2) \\ \hline t_1: +25°C or specified room temperature \\ \hline t_2: Test temperature (-55°C or 125°C) \\ \hline \end{array}$			
Short-time overload	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.			
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds for cement fixed resistors the testing voltage is 1000V.			
Terminal strength No evidence of mechanical damage		 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations. 			
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}C$ solder for 10 ± 1 seconds.			
Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C ±3 °C Dwell time in solder: 2~3seconds. 			
Humidity (Steady state)	Resistance change rate must be in $\pm (5\%+0.05\Omega)$, and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40 ± 2 °C and 90~95%RH relative humidity			

Load life in humidity	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	7.9 Resistance change after 1000 hours (1.5hours "ON" · 0.5hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at 40±2°C and 93%±3% RH.
Load life	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^{\circ}$ C or $70\pm2^{\circ}$ C ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	MIL-STD-202 108A Upper limit temperature , for 16H.

9. <u>Note</u>

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

10. <u>Record</u>

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	1.Modify derating curve 2.Modify the load life test conditions	3 5	Sep.26, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice